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Abstract
The inevitable existence of static internal imperfections and residual
interactions in some quantum computer architectures results in internal
decoherence, dissipation and destructive unitary shifts of active algorithms.
By exact numerical simulations, we determine the relative importance and
origin of these errors for a Josephson charge-qubit quantum computer. In
particular we determine that the dynamics of a CNOT gate interacting with
its idle neighboring qubits via native residual coupling behaves much like a
perturbed kicked top in the exponential decay regime, where fidelity decay is
only weakly dependent on perturbation strength. This means that retroactive
removal of gate errors (whether unitary or non-unitary) may not be possible,
and that effective error correction schemes must operate concurrently with the
implementation of subcomponents of the gate.

PACS numbers: 03.65.−w, 05.30.−d, 03.65.Yz, 03.67.Lx

1. Introduction

In this paper, we study the effects of one- and two-body static flaws on a quantum controlled-
NOT (CNOT) gate performed on two qubits of a larger Josephson charge-qubit quantum
computer (QC) [1, 2]. The expected external decoherence time for this architecture allows
up to 106 single-qubit operations, and hence issues of internal decoherence and other intrinsic
errors are of paramount concern [3–6, 8–10]. By internal decoherence, we mean errors in
the basic structure of the QC such as incorrect qubit parameters or unwanted qubit–qubit
interactions, while by external decoherence we refer to the effects of unwanted interactions
with classical external fields and structures which are not part of the QC. The isolated QC
core, with internal decoherence sources only, can be mapped onto a subsystem–bath scheme
wherein the active part, a two-qubit register (the subsystem), performs the CNOT gate while
interacting residually with the neighboring idle qubits (the bath). We evolve the QC exactly
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from a variety of configurations: eight different initial register states, two different error
generators (phase and bit-flip errors) and five different intra-bath coupling strengths and we
monitor the emergence of errors with two error quantifiers: gate purity and fidelity. These
measures allow us to distinguish non-unitary errors (i.e. decoherence and dissipation) from
those of unitary type (i.e. coherent shifting or distortions).

A first brief report based on our study [3] revealed two important effects: the suppression
of non-unitary errors with increasing intra-bath coupling, and the existence of a destructive
universal coherent shift. The importance of the first effect is that one can, in principle,
manipulate the idle qubit environment to improve the performance of active qubits [3]. Thus,
chaotic bath interactions may prove to be useful as an error correcting strategy, as suggested
in [11]. The second effect revealed that flawed QCs are subject to destructive bath-induced
unitary errors due to coherent shifting. While the coherent shift is a potentially harmful error
source, also a focus of a related study [4], it can be used to probe internal bath dynamics and
to estimate the two-body residual interaction strength.

Two unresolved mysteries connected with the time scales and strength of fidelity decays
emerged from these initial reports [3, 4]. In [4], where the subsystem is a single qubit, the
fidelity decayed slowly over times greater than 30 ns, but in the CNOT study discussed here
and initially reported in [3] the fidelity decays in about 1 ns. A natural question is why the
fidelity decay should be so much worse for the CNOT subsystem than for the single-qubit
subsystem, despite the fact that the magnitude of the shift was identical in the two studies?
Secondly, an interesting and useful property of the subsystem–bath configuration in [4] was
that the fidelity was strongly dependent on the intra-bath residual coupling strength. In the
CNOT study reported in [3], this sensitivity almost totally vanishes for the same type of
coupling operator.

This paper seeks to gain some understanding of both of these effects. Basically, we
conclude that the dynamics of the CNOT gate behaves like a perturbed kicked top [7] in
the exponential decay regime for xx-type error generator (bit-flip errors) and in the Golden
Rule regime for zz-type error generator (phase errors), while the dynamics of a single-qubit
subsystem of [4] behaves like a weakly kicked spin in the Golden Rule regime. The fact that
the CNOT gate dynamics behaves like a kicked top means that the unitary errors generated
cannot be corrected after the gate is implemented, but must be corrected concurrently with the
implementation of the gate. This fact may prove very useful in future attempts to develop the
necessary error correction strategies for the bath-induced unitary errors.

In our initial report [3], we examined the average values of error quantifiers, i.e. purity
and fidelity, which allowed us to compare the overall relative importance of errors generated
by two different types of coupling operators. Here we also give particular attention to the
individual initial states to determine whether errors show state dependences. Small differences
in errors accumulated over a single gate may eventually lead to much larger differences after
many gates. Decoherence is a state-dependent phenomena, so state selectivity is of interest
especially in the case of non-unitary errors.

Suppression of decoherence with increasing intra-bath interactions has been explained
in terms of a corresponding decline in the canonical variance of the bath coupling operator
caused by the vanishing of off-diagonal matrix elements [3]. While this explanation is correct
for the models considered in [3, 4], and it is even possible to use the vanishing of off-diagonals
to devise a numerical method for open quantum systems interacting with chaotic environments
[5, 6], a decline of variance cannot satisfactorily explain the suppression of decoherence in
all cases. Here we consider zz- as well as the native xx-type subsystem–bath interactions.
By comparing and contrasting the two cases, we gain considerable insight into the origin of
these discrepancies and we show that in the case of zz-type interaction, the suppression of
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decoherence with increased intra-bath coupling is caused by an increasingly more Markovian
character to the subsystem dynamics.

The original motivation behind this study was to determine what types of errors emerge
in the actual dynamics of a statically flawed QC. Recent studies [8] of the statistical properties
of isolated flawed QCs [9] show that sufficiently strong residual two-qubit interactions cause
the onset of chaos and consequent dynamical thermalization of the QC core [10]. A suggested
remedy [10] is to keep residual inter-qubit coupling strengths below the critical values beyond
which chaos appears. However, this can be a problematic solution. The computation time of
a gate operation is inversely proportional to external field strength, and longer gate operations
are more likely to be decohered by external influences. In any case, the circumstances under
which internal chaos is truly harmful are far from clear.

Perturbative studies [12, 13] wherein dynamical fluctuations in the QC Hamiltonian are
modeled by random kicks show better fidelity decay when the perturbations are chaotic. This
suggests that chaos can actually stabilize the quantum motion, which results in better fidelity.
This prediction is consistent with a number of studies [11, 14] of a central system interacting
with an external self-interacting many-spin bath, but inconsistent with other related studies
[15]. The controversy over whether chaos is harmful [16, 17] may soon be satisfactorily
resolved. A recent study appears to unify the various results in a picture wherein chaos is
beneficial at low temperatures but harmful at high temperatures [18].

Previous studies of flawed QCs do not address the specifics of an operating isolated QC
architecture. Nor do these models address what specifically happens to an algorithm in the
presence of such flaws. An ideal gate sequence for one architecture may be quite different
from that of another architecture. Hence, one can ask what parts of an algorithm are affected
worst (e.g. one- or two-qubit gates), and whether they are irreversibly altered via internal
decoherence or dissipation or merely coherently shifted. Such information could be essential
for optimizing performance of a QC architecture, and further development of error correction
schemes [19]. Hence, there are many questions that cannot be meaningfully investigated in
the context of random matrix or other abstract models. A closer examination of the effects of
internal errors in actual QC proposals is thus warranted.

The organization of this paper is as follows: in section 2, we discuss the mathematical
details of our model for an isolated QC including the two-qubit register on which the CNOT
gate is performed. In section 3, the parameters used in the calculations and the computational
methods of our study are summarized. Error quantifiers are discussed in section 4. In section
5, we present numerically exact results for two error quantifiers: purity and fidelity. The
observed effects are explained in sections 6 and 7. In section 8, we summarize our results and
discuss possible extensions of our study.

2. An isolated statically flawed QC model

While QCs with as few as 50 qubits could be usefully employed for simulation of interesting
dynamical systems such as spin-chains and quantum maps, for more general purposes a
QC will need to have thousands of qubits to be competitive with a classical computer [20].
Universal quantum computation [21–23] can be implemented by the use of external fields to
induce transformations on one- or two-qubit subcomponents of the overall QC. Many such
transformations may need to be formed concurrently. Ideally then, an isolated QC consists
of a set of qubits which are not self-interacting unless they are actively participating in a
two-qubit gate operation. In practice local residual interactions exist which can couple active
qubits unintentionally to neighboring idle qubits, which can cause unavoidable internal errors
on a performed quantum algorithm. A recently proposed Josephson charge-qubit QC [1]
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architecture on which our study is based, for example, is prone to a variety of internal noise
sources [1, 24–26] and residual interactions among qubits are thus very likely to exist.

Thus, to realistically model internal errors in such a QC core one should in principle
include static two-body interactions with at least idle nearest-neighbor qubits. Additionally,
one-qubit structural defects are also possible and will be included in our model. Of course
other effects, such as dynamical fluctuations in qubit control parameters due to noisy time-
dependent electromagnetic fields, which directly affect the active qubits, are also expected.
For simplicity, we neglect these dynamical effects in this initial study.

In section 2.1, we discuss a statically flawed spin-bath model representing two qubits of a
QC on which a CNOT gate is performed and a set of neighboring idle qubits. The initial states
of the QC are discussed in section 2.2. Here again we avoid the complications inherent in a
discussion of imperfect initial conditions to focus solely on the effects of static flaws. Finally,
we restrict our discussion to a low-temperature regime relevant to QC design [28]. Our model
thus remains an idealization to some extent, but simultaneous inclusion of all possible errors
would only impede our understanding of each error type.

2.1. Hamiltonians

The total Hamiltonian of the isolated QC is of the form

Ĥ (t) = Ĥ S(t) + Ĥ SB + Ĥ B (1)

where Ĥ S(t) is the two-qubit control Hamiltonian for the CNOT gate, Ĥ SB governs interactions
between the active and idle parts and Ĥ B is the Hamiltonian of the idle part.

We use the following control Hamiltonian to generate the required logic operations for
the CNOT gate:

Ĥ S(t) = −1

2

2∑
i=1

(
Bx

i (t)σ̂
i
x + Bz

i (t)σ̂
i
z

)
+ Jx(t)σ̂

1
x σ̂ 2

x . (2)

Hamiltonian (2), the basis of a Josephson charge-qubit QC [1] proposal, allows a scalable
design wherein any two charge qubits in a circuit can be effectively coupled by a common
super-conducting inductance. In addition, the Hamiltonian (2) requires only one two-qubit
operation to implement a CNOT gate. Detailed discussions on how to generate one- and two-
qubit gates by external manipulations of fields are given in [1]. We discuss experimentally
accessible values of control parameters for (2) in section 3.

Clearly the experimental manipulations [1] required to generate equation (2) can induce
a potential source of error. We need to make some simplifying assumptions regarding
the implementation of the gate in order to concentrate on errors induced by static internal
imperfections. In what follows, we assume full control over the dynamics of the CNOT gate.
In particular, we assume that the propagation of the CNOT gate can be achieved with perfect
square pulses [27] which could only be approximately implemented experimentally. Moreover,
we do not allow any free hamiltonian evolution by assuming that consecutive elementary gates
comprising CNOT protocol can be simultaneously switched on and off. In other words,
the field strengths experienced by qubits can be switched on and off instantaneously via
Bx/z

i (t) = Bx/z

i [�(t − ton)−�(t − toff)] for i = 1, 2 and Jx(t) = Jx[�(t − ton)−�(t − toff)],
and these are constant in the interval [ton, toff]. Here the superscript x/z means x or z. Thus,
the full implementation of the CNOT gate can be achieved in nine steps. These steps consist
of Schrödinger evolutions in time intervals [τi, τi+1] for i = 0, . . . , 8. The switching times for
the nine square pulses of the CNOT gate, and the corresponding active Hamiltonian in each
time interval, are summarized in table 1. The unitary operator governing the gate can thus be
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Table 1. Switching times and active Hamiltonians used to implement the CNOT gate.

Switching intervals Active Hamiltonian

[τ0 = 0, τ1 = π/(2Bz)] − 1
2B

zσ̂ 2
z

[τ1, τ2 = τ1 + π/(2Bx)] − 1
2B

x σ̂ 2
x

[τ2, τ3 = τ2 + π/(2Bz)] + 1
2B

zσ̂ 2
z

[τ3, τ4 = τ3 +
√

2π/(2Bz)] − 1
2B

z
∑2

i=1(σ̂
i
z + σ̂ i

x )

[τ4, τ5 = τ4 + π/(4Jx)] Jx(−σ̂ 1
x − σ̂ 2

x + σ̂ 1
x σ̂ 2

x )

[τ5, τ6 = τ5 +
√

2π/(2Bz)] + 1
2B

z
∑2

i=1(σ̂
i
z + σ̂ i

x )

[τ6, τ7 = τ6 + π/(2Bz)] − 1
2B

zσ̂ 2
z

[τ7, τ8 = τ7 + π/(2Bx)] + 1
2B

x σ̂ 2
x

[τ8, τ9 = τ8 + π/(2Bz)] + 1
2B

zσ̂ 2
z

written as

ÛCNOT = Û (τ9, τ8)Û(τ8, τ7)Û(τ7, τ6)Û(τ6, τ5)Û(τ5, τ4)

× Û (τ4, τ3)Û(τ3, τ2)Û(τ2, τ1)Û(τ1, τ0). (3)

At this stage in the development of our model, a dynamical simulation would show perfect
gate fidelity. We now include interaction with the neighboring idle qubits.

We investigate two different types of errors separately [27]. Bit-flip errors are modeled
by an interaction Hamiltonian of the form

Ĥ SB = (
σ̂ 1

x + σ̂ 2
x

) N+2∑
i=3

λx
i σ̂

i
x, (4)

while phase errors are modeled by

Ĥ SB = (
σ̂ 1

z + σ̂ 2
z

) N+2∑
i=3

λz
i σ̂

i
z . (5)

Although solid and condensed phase QC proposals inherit a variety of physical interactions
to couple qubits, and accordingly two-qubit residual interactions of xx-, zz-, yy- or xy-type
are possible error generators, we expect only xx-type residual interactions for the Josephson
charge-qubit QC [1] under investigation. This is because, for xx-type interactions, the active
and idle parts will be fully symmetric. However, consideration of this second asymmetric
zz-type of coupling will greatly improve our understanding of the native symmetric dynamics.

The collective dynamics of the idle qubits is modeled via an N-body self-interacting
qubit-bath Hamiltonian,

Ĥ B = −1

2

N+2∑
i=3

(
Bx

i σ̂ i
x + Bz

i σ̂
i
z

)
+

N+1∑
i=3

N+2∑
j=i+1

J i,j
x σ̂ i

x σ̂
j
x . (6)

Hamiltonians similar to (6) were the focus of a number of previous studies [8–10] but obviously
it is not the most general Hamiltonian for a qubit-based QC.

Static one-body fluctuations are modeled by randomly and uniformly sampling
coefficients from the interval

B
x/z

i ∈ [
B

x/z

0 − δ/2, B
x/z

0 + δ/2
]
. (7)
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We assume that the idle qubits are similar to the active qubits since they all are the components
of the same QC. Thus, the average values B

x/z

0 of the distribution represent the native qubit
dynamics in the absence of flaws. In other words, the idle qubits differ from the active qubits
by a static noise characterized by a detuning parameter δ.

In modeling two-body residual interactions, i.e. system–bath interactions and intra-bath
interactions, we have followed [8, 9]. So, we have sampled the coupling coefficients randomly
and uniformly from J

i,j
x ∈ [−Jx, Jx], and λ

x/z

i ∈ [−λ, λ]. In fact we used the same set of λi

values for both xx and zz coupling. In previous studies [8, 9], the QC core is assumed to be
a two-dimensional lattice of qubits interacting via nearest-neighbor qubit–qubit interactions.
While we use the same type of distribution for qubit–qubit interactions, we also allowed all
possible qubit–qubit interaction in our bath Hamiltonian (see equation (6)). This is because
the charge-qubit QC proposal [1] under investigation permits all pairwise qubit couplings in
principle and so the residual interactions among all qubit pairs are likely to exist. Therefore,
we expect that the qubit–qubit interactions in our model mimic short as well as long range
interactions. Nevertheless, the type of the distribution and allowed interactions in our model
should still be considered as an idealization. This is because, for example, we did not explicitly
take into account spacial dependences of the noise due to the location of qubits in the circuit.
In an actual experiment, the magnitude and type of the noise should be at least partially
intrinsic to the particular experimental conditions and physical setup. Nevertheless, we try to
compensate for this idealization of our model by employing a large range of parameters in our
numerical simulations.

2.2. Initial conditions

We implement the CNOT gate for eight different initial pure states

ρ̂i
S(0) = ∣∣ψi

0

〉〈
ψi

0

∣∣ (8)

of the active qubits, where
∣∣ψi

0

〉
are chosen from two distinct groups: {|00〉, |01〉, |10〉, |11〉}

is a set of four standard basis states, and {(|00〉 + |11〉)/√2, (|00〉 − |11〉)/√2, (|01〉 +
|10〉)/√2, (|01〉 − |10〉)/√2} is a set of four Bell states.

We assume that the bath has been idle long enough to be thermalized so that the initial
states of the computer are of the form

ρ̂i(0) = ρ̂i
S(0) ⊗ ρ̂B(0) (9)

where ρ̂B(0) is the canonical bath density at equilibrium given by

ρ̂B(0) = (1/Q) exp(−Ĥ B/kT ) (10)

where Q is the partition function

Q = TrB[exp(−Ĥ B/kT )]. (11)

Direct product states like (9) are not easily achieved in practice, but the inclusion of the effects
of imperfect initial conditions would greatly complicate our study. Moreover, we wish to
observe the dynamical emergence of errors from residual static internal interactions, and the
presence of imperfect initial conditions would only cloud the matter.

3. Numerics

Our numerical simulations are based on a recent charge-qubit QC proposal [1] for which
the experimentally realizable control parameters are Bx = Bz = 200 mK. Hence, a typical
switching time for the one-qubit gate operations is of order h̄/2Bz ∼ 0.1 ns. Two-qubit
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switching times are however ten times longer. The total gate time for the CNOT gate is
then about τ9 = 1.129 ns. The relevant temperature is 50 mK [28]. While achieving this
low temperature, necessary for coherent quantum control, might be an experimental burden it
leads to significant computational advantages for exact propagation.

3.1. Parameters

For computational convenience, we scale the parameters of the control Hamiltonian in units
of ε = 200 mK. The one- and two-qubit control parameters are thus Bx = Bz = 1, and
Jx = 0.05, respectively, and kT = 0.25. The other parameters that define the idle qubits are
Bx

0 = Bz
0 = 1 and δ = 0.4. We considered a number of Jx values in order to explore the

emergence of chaos: Jx = 0.05, 0.25, 0.50, 1.00, 2.00. The subsystem–bath interaction
strength was set equal to the two-qubit control parameter, and thus λ = 0.05 for both bit-flip
and phase errors.

3.2. Simulations

The fact that we are in the low-temperature limit allows us to write the initial bath state as

ρ̂B(0) =
ncut∑
n=1

∣∣φB
n

〉e−En/kT

Q′
〈
φB

n

∣∣ (12)

where the sum is over the thermally populated, lowest energy, eigenstates of the bath. Note
that

Ĥ B

∣∣φB
n

〉 = En

∣∣φB
n

〉
(13)

and

Q′ =
ncut∑
n=1

exp(−En/kT ) (14)

where the energies En are ordered such that En � Em if n < m. Thus ncut is not necessarily
the total number of eigenvalues but rather a cutoff chosen so that states ncut + 1 and higher are
unoccupied. A Lanczos algorithm [29] was employed for the exact diagonalization of bath
Hamiltonian (6) for N = 10 idle bath qubits and in this low-temperature regime ncut = 20
was sufficient. Hence, our QC core can be viewed as a qubit pair surrounded by idle nearest
neighbors in a two-dimensional circuit. In an actual experimental setup λi may have a
systematic spatially dependent part in addition to the noise component considered here. We
neglect this for simplicity.

The time evolved density matrix of the computer is then exactly expressed as

ρ̂i(t) =
ncut∑
n=1

∣∣�i
n(t)

〉e−En/kT

Q′
〈
�i

n(t)
∣∣ (15)

where |�i
n(t)〉 obeys the Schrödinger equation

d
∣∣�i

n(t)
〉/

dt = −(i/h̄)Ĥ (t)
∣∣�i

n(t)
〉

(16)

with initial conditions
∣∣�i

n(0)
〉 = ∣∣ψi

0

〉 ⊗ ∣∣φB
n

〉
. Here i = 1, . . . , 4 labels the initial state of the

gate for both standard basis states and Bell states. The numerical integrations of (16) were
performed by an explicit variable-step-size Runge–Kutta method [30] of order 8.
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4. Error quantifiers

The quantity of primary interest is the reduced density of the active degrees of freedom, ρ̂S(t),
obtained by tracing out the degrees of freedom of the idle bath qubits, i.e.

ρ̂S(t) = TrB[ρ̂(t)].

The reduced density supplies all necessary probabilistic information about the open dynamics
of the CNOT gate. Hence, once the reduced density is known, the quality of gate
implementation can readily be assessed by standard error quantifiers. We employ two
error quantifiers for our assessment: purity and fidelity. Non-unitary internal errors due
to decoherence and dissipation are quantified by using purity since the purity is insensitive
to unitary effects. Fidelity reflects all sources of error. Hence, a large deviation between the
purity and fidelity can be used as an indicator of unitary errors due to the coherent shifting
process.

Purity, also known as linear entropy, is defined by the trace of the square of the reduced
density operator,

P(t) = TrS
[
ρ̂2

S(t)
]
, (17)

and it gives a measure of how close the reduced density stays to a pure state. Most if not
all technologies which rely on quantum interference employ pure states exclusively for their
implementation. Deviations from perfect purity are however inevitable in practice and hence
some measure of the extent of this deviation is needed. Pure states have a purity of one and
mixed states have purities less than one.

Gate fidelity can be calculated from the reduced density using

F(t) = TrS
[
ρ̂S(t)ρ̂

ideal
S (t)

]
, (18)

where ρ̂ ideal
S (t) is the dynamics obtained in the absence of residual interactions with the idle

qubits, i.e.,

ρ̂ ideal
S (t) = ÛCNOT(t)ρ̂S(0)Û

†
CNOT(t). (19)

The desired value of the fidelity would be unity at all times in the absence of coupling to the
idle bath qubits.

5. Results

In our study, we will not attempt to distinguish between decoherence and dissipation since
the energy of the two-qubit register is always changing due to the external manipulations
of the control Hamiltonian. However, the distinction between non-unitary ‘decoherence and
dissipation’ and unitary ‘coherent shifting’ is important since unitary errors are far more easily
corrected.

In figures 1–4 we examine non-unitary errors as measured via purity which we discuss in
section 5.1. Figures 1 and 2 focus on standard initial states. In figure 1, we examine dynamics
with xx-type coupling, while in figure 2 the coupling is of zz-type. Each figure shows results
for four initial states; the subfigure (a) is reserved for |00〉, the subfigure (b) for |01〉, the
subfigure (c) for |10〉 and the subfigure (d) for |11〉. Analogous quantities are reported in
figures 3 and 4 for Bell-type initial states: the subfigure (a) is reserved for (|00〉 + |11〉)/√2,
the subfigure (b) for (|00〉−|11〉)/√2, the subfigure (c) for (|01〉+ |10〉)/√2 and the subfigure
(d) for (|01〉 − |10〉)/√2.

Figures 5–8 examine unitary errors as measured via fidelity which we discuss in
section 5.2. The subfigure states are organized in the same way as for purity. Figures 5
and 6 are for xx-type coupling while figures 7 and 8 are for zz coupling.
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Figure 1. Purity P(t) versus time for xx bit–flip errors calculated for initial standard basis states.
τ9 = 1.13 ns.

For each initial condition, the purity and fidelity are shown for five different values of the
intra-bath coupling Jx . We have also labeled the times at which the various manipulations
involved in the gate are initiated.

We have performed ten different realizations of the QC. The results presented in this
section are only for a single realization but it is a typical flawed QC. However, we have
encountered some exceptional realizations. In some cases, the bath density of states may
increase with increasing Jx . This can cause accidental near degeneracies in the low-energy
spectrum of the bath. The number of thermally and dynamically populated bath states can
then increase with increasing Jx . This then results in an anomalous increase of decoherence
with Jx . In some QC architectures (e.g. symmetric xy-models) not considered here, this is the
dominant effect.

5.1. Non-unitary errors from decoherence and dissipation

We plot the purity versus time for xx-type coupling in figure 1 for standard initial basis states.
In figure 1(a), we see five different curves representing the different values of Jx . The lower
the Jx the greater is the departure from the ideal value of 1. For a near integrable bath
(i.e. Jx = 0.05) we see the greatest impurity and so the highest non-unitary error. As Jx is
increased, this error is systematically reduced until by the time Jx = 2 there is almost no
non-unitary error. For the lower values of Jx , oscillations are observed which are indicative of
the presence of memory effects in the dynamics. These effects suggest that integrable baths
are more non-Markovian and cause more decoherence and dissipation than chaotic baths. The
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other subfigures for the other standard initial states are qualitatively similar. Clearly, however,
there are some quantitative differences which are indicative of a degree of state specificity.

The early dynamics t � τ4 are similar in (a) and (c), and in (b) and (d) for
Jx = 0.05, 0.25, 0.50. But (a) and (b) are quite different on this time scale. We see bunching
of the curves at τ3 in (a) and (c), but clearly separated curves in (b) and (d) at the same time.
While the short time similarities of (a) and (c) continue throughout the dynamics, (b) and (d)
then evolve rather differently. We see pronounced oscillations in the near integrable curves of
(d) but those of (b) are more monotonic. For Jx = 0.05 the purity at τ9 is roughly 0.935 in (b)
and 0.9625 in (d) which is quite a big difference. Thus, there is clearly a degree of non-unitary
state specificity for xx-type coupling for the smaller Jx values. The Jx = 1.00, 2.00 curves
show almost no state specificity.

In figure 2, we plot dynamics for the same initial states but for zz-type coupling. Here
the plots again show an improvement in purity as Jx increases. The magnitude of the errors is
also quite similar to that for xx-type coupling. This rough similarity is quite surprising, as we
will show later that the origins of the effect are different for the two cases. The early dynamics
t � τ4 are similar in (a) and (c), and in (b) and (d) for the lowest Jx values. There are no
strong similarities in the dynamics of any subfigures after τ4. Here state specificity appears
quite strong with most divergence taking place during the long two-qubit gate. The highest
two Jx values show little state specificity.

In figure 3, we return to xx-type coupling but for Bell-type initial states. Again we see
suppression of errors with increasing Jx . For Jx = 0.05, we see worse decoherence than
we have yet encountered, but otherwise the dynamics is qualitatively similar to that for the
standard states. State specific effects are slightly less pronounced than in figure 1.

Figure 4 shows that the switch from standard states to Bell states for phase errors is not
dramatic except for (a) and (b) where the short-time dynamics is quite different.
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In all figures non-negligible deviations of the purity from the theoretically desirable limit
of 0.999 99 [31] are observed for the experimentally relevant two-qubit coupling strength
Jx = 0.05. Recall that the number of idle bath qubits directly participating in the decoherence
process is relatively low, i.e. N = 10. This number could be higher for larger QCs, in three-
dimensional circuits for example. Hence, internal decoherence can be a matter of concern in a
flawed QC core. On the other hand, it is also very clear that increasing the residual interaction
strength Jx causes rapid reduction of decoherence. Hence the bath chaos stabilizes the gate
implementation by causing an increase in the purity. For the strongest coupling case Jx = 2,
the effect of decoherence almost completely vanishes for both types of coupling operators and
all initial conditions. This suggests that induced bath chaos may serve as an error correcting
strategy. However, while such strong bath couplings are certainly desirable they may not
be experimentally accessible for this particular architecture [1] within today’s technological
limits [1] (see section 3 for the experimentally accessible control parameters). Nevertheless,
the general effect we observe is systematic, and should be observable in the experimentally
accessible regime.

Overall the decrease of the purities with time appears qualitatively similar for all initial
conditions, but Bell states perform slightly worse than standard basis states. This should
not be surprising. Since Bell states are special correlated states, they are more fragile to the
destructive effects of decoherence. Performance with respect to the type of coupling operator
is also quite similar in all cases. Overall, the purity decays are of comparable magnitude
for both bit-flip and phase-type couplings. However, intrinsic decoherence due to particular
initial conditions and coupling operators is also seen. For example, decoherence by bit-flip-
type coupling affects the system during the first gate operation under all initial conditions.
In the case of phase-type coupling, however, the errors do not emerge until the second gate
operation for all standard basis states (as seen in figure 2) and for two of the Bell states (seen
in figures 4(c) and (d)). The decoherence-free dynamics observed in these cases is due to the
fact that the first gate operation commutes with the coupling operator and the initial states are
eigenvalues of both.

Decoherence is clearly a state-dependent phenomenon. The slight state specificity we
discuss above cannot be dismissed as negligible because the small effects observed in this one
gate could get amplified over time during other gates.

5.2. Unitary errors from coherent shifting

We plot the fidelity versus time for bit-flip xx-type coupling in figure 5 for standard initial
basis states and in figure 6 for Bell states. For the most part the fidelities are qualitatively
similar in that they start out at unity and decay quite uniformly toward zero at the end of the
gate. There is almost no dependence on Jx , although fidelity does get slightly worse with
increasing Jx . Recall, that the deviations of the purity from unity were less than 10%. Here
we are losing all fidelity over the course of a single gate. Moreover, almost all of this error
must be of unitary origin since it does not affect the purity. This level of error is disastrous for
the CNOT gate, but at least the error is mostly unitary, and thus there may be some systematic
way to remove the unitary (error) component by existing error correction schemes [19] or
specifically tailored new methods.

Some state-specific recurrences are seen in figures 5(c) and (d) and in 6(c). The behavior
of figure 6(c) during the two-body gate is also quite odd because there is a complete inversion
of the Jx ordered sequence of curves, with the Jx = 0.05 result going from best to worst
during the two qubit gate.
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For phase errors, in figure 7 for standard initial basis states, and in figure 8 for Bell states,
we see quite different behaviors. Here the magnitude of the fidelity is quite sensitive to the
strength Jx of the intra-bath coupling. Chaotic baths yield good fidelity while near integrable
baths lose 60% of the fidelity over the gate. Dependence on initial state is not all that strong.
Note however for Bell states, how (a) and (b), and (c) and (d) show similar behaviors for
t � τ4.

6. Discussion of non-unitary effects

We have seen that increasing Jx results in reduced non-unitary errors. Here we will attempt to
explain this effect. Previous studies have assumed that increasing intra-bath coupling results
in increasing chaos [8–11]. We will show that this is indeed the case in our model. But our
primary concern will be to determine the precise cause of the reduction in errors. We chose
to include zz- as well as native xx-type coupling in our study even though zz-type coupling is
not expected in this particular QC architecture. We will see that suppression of decoherence
for these couplings is caused by two different effects.

Subsystem dynamics in the chaotic regime is governed [4, 32, 33] by a master equation
of the approximate form

d

dt
ρ̂S(t) = −(i/h̄)[Ĥ eff(t), ρ̂S(t)] −

∫ t

0
dt ′W(t − t ′)L̂Dρ̂S(t

′) (20)

where Heff(t) is an effective Hamiltonian, including coherent shift terms, the form of
which will be discussed in the following section, W(t) is a memory function, L̂D =
(C/h̄2){[·Ŝ, Ŝ] + [Ŝ, Ŝ·]} is a dissipative Lindblad–Kossakowski superoperator [34], Ŝ is the
system coupling operator, and C is the canonical variance of the bath coupling operator B̂.
This equation predicts that decoherence and dissipation in the chaotic regime are governed by
two factors; the variance C of the bath coupling operator, and the positive Gaussian shaped
memory function W(t) (unity at t = 0). Thus, based on this master equation, the suppression
of decoherence must either be governed by a decreased variance or by a more Markovian
dynamics.

The more chaotic a bath is, the easier and quicker it can relax, and hence perturbations
from a subsystem are quickly thermalized, and subsystem dynamics is thus more Markovian.
Thus, we expect the memory function to shift its weight to shorter times as Jx increases. As a
consequence, the bath will tend to cause less decoherence. One would also expect the variance
in the native bath coupling to decrease with increasing Jx due to the vanishing of off-diagonal
matrix elements [5]. However, this need not be the case with the non-native zz coupling, since
it does not commute with the xx coupling operator. Thus, we will see that both factors favor a
reduction of decoherence in the xx case, but reduction of decoherence in the zz case is entirely
due to the increasing Markovity of the dynamics. This subtlety was not fully appreciated in
earlier studies [3, 11].

To verify these conclusions, we begin by showing that the dynamics does indeed become
more chaotic with increasing Jx . To accomplish this we examine the bath level spacing
statistics and the Lodschmidt echo. Next we examine the variances of the bath coupling
operators. Finally, we look at the product of the variances and memory functions associated
with xx and zz couplings.

6.1. Level statistics and Lodschmidt echo

A convenient way to verify the crossover from the integrable to chaotic regimes is to observe
the nearest-neighbor level spacing distribution P(s). As chaos emerges, the functional form
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changes from the Poisson distribution P(s) = exp(−s) characteristic of integrable (i.e.
uncoupled) systems to the Wigner–Dyson form P(s) = (π/2)s exp(−πs2/4) appropriate
for chaotic systems.

To verify that this transition does indeed occur in the QC core we performed a level
statistics analysis on the unfolded spectrum of the 200 lowest eigenenergies of Ĥ B . The
unfolded energies Ēi were generated from actual energies Ei using the smoothed staircase
functions N̄(E) via Ēi = N̄(Ei). Here N̄(E) was obtained as a polynomial least-squares fit
to the actual staircase function N(E) = ∑200

i=1 �(E − Ei) where �(x) is the Heaviside step
function.

A summary of the results of the nearest-neighbor spacing analysis is given in figure 9.
The onset of chaos can be easily seen for a relatively weak inter-qubit coupling strength of
Jx = 0.15. Above this value chaos sets in and the eigenstatistics are basically consistent with
the level-repulsion characteristic of Wigner–Dyson statistics.

While level spacing statistics are considered to be a universal indicator of quantum chaos,
they do not provide information on the degree of chaoticity. Therefore, we also examined the
Loschmidt echo M(t) [35], which is widely believed to be an efficient indicator of quantum
chaos [36], and which also gives a quantitative indication of the strength of the chaos (i.e., it
is similar to a Lyapunov exponent).

We calculated M(t) for the bath Hamiltonian with the following formula:

M(t) = |〈ψ0| exp{iĤ 0t/h̄} exp{−i(Ĥ 0 + V̂ )t/h̄}|ψ0〉|2 (21)

where |ψ0〉 is the ground eigenstate of Ĥ 0, Ĥ 0 is the integrable bath Hamiltonian (i.e. Ĥ B

for Jx = 0.00) and V̂ is the chaos generating perturbation Hamiltonian (i.e., the xx coupling
terms) for Jx = 0.05, 0.15, 0.25, 0.50, 1.00, 2.00. A summary of our M(t) calculations is
presented in figure 10. It is clear from figure 10 that an increasing magnitude of intra-bath
coupling Jx results in faster exponential decay of M(t), and systematic approach toward a
decay rate insensitive to Jx , and this is customarily interpreted as an increasing degree of
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Figure 10. (a) Short- and (b) long-time Loschmidt echo dynamics of bath Hamiltonian for
Jx = 0.05, 0.15, 0.25, 0.50, 1.00, 2.00. Time is in units of h̄/ε = 0.038 ns.

chaoticity [35–37]. Note that for smaller Jx (i.e. Jx < 0.50) the echo M(t) does not reach
zero.

6.2. Canonical variances of bath coupling operators

For xx coupling we define �̂x = ∑N+2
i=3 λx

i σ̂
i
x and for zz coupling we define �̂z = ∑N+2

i=3 λz
i σ̂

i
z .

The variances of these coupling operators can now be defined via Cx = TrB{(�̂x −�̄x)
2ρ̂B(0)}

for the xx case, and Cz = TrB{(�̂z − �̄z)
2ρ̂B(0)} for the zz case. Here �̄x = TrB{�̂xρ̂B(0)}

and �̄z = TrB{�̂zρ̂B(0)} denote the canonical averages. In figure 11 we plot canonical
variances of both bath coupling operators.

Figure 11 shows a decline of the variance for �̂x with increasing Jx . Note, however, that
there is a growth of variance for �̂z with increasing Jx . The decline of Cx with increasing
Jx is expected because the chaos generating interactions, parameterized by Jx , and the bath
coupling operator �̂x are of the same kind. For strong Jx , the eigenstates of Ĥ B are also
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Figure 11. Canonical variances in the bath coupling operators for xx and zz couplings versus Jx .

eigenstates of �̂x . Hence, the off-diagonals of �̂x in basis of Ĥ B are vanishing. Note that this
situation does not require a large thermodynamic bath dimension because of the orthogonality
of eigenstates. In parallel to the �̂x case, a growth of Cz with Jx can also be understood
because the variances are calculated over the same bath states and �̂x and �̂z operators are
related by canonical commutation rules.

6.3. Variance times memory function

In figure 12(a), we plot the variance times the memory function for �̂x coupling. The dominant
effect here is the decrease in the magnitude caused by the reduction of variance. The function
is also however becoming more Markovian, i.e. it is weighted over a smaller time interval.
In figure 12(b) we see a growth in the initial magnitude which corresponds to an increase in
the variance. But we also see a marked shift toward shorter times. Again the dynamics is
becoming more Markovian with increasing Jx , and it is this which causes the reduction of
decoherence. Thus, both types of couplings show a reduction of decoherence in the chaotic
regime, but the manifestation of this effect is a bit different.

7. Discussion of unitary effects

All unitary effects in our study arise as a consequence of the coherent shift which is an
inherent property of Nakajima–Zwanzig-type master equations. The coherent shift enters
equation (20) through the effective system Hamiltonian Ĥ eff(t) which is of the form

Ĥ eff(t) = Ĥ S(t) + ŜB̄, (22)

where B̄ is the canonical average of the bath coupling operator B̂. The second term in
equation (22) is the shift in question, which suggests that a non-negligible contribution
from the coherent shift should always be expected whenever the canonical average of the
subsystem–bath coupling operator has a non-vanishing value (i.e., B̄ �= 0). In some of the
older spin–boson and boson–boson studies, the existence of coherent shift was not discussed
since the coupling operators are of Jaynes–Cummings or coordinate type for which B̄ = 0,
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Figure 12. Canonical variances times memory function versus time: (a) �̂x coupling and (b) �̂z

coupling. Time is in units of h̄/ε = .038 ns.

and the shift therefore vanishes. The coherent shift has important consequences when the
native subsystem Hamiltonian does not commute with the shift Hamiltonian, i.e. [Ĥ S, Ŝ] �= 0.
In this case, the effect of the shift corresponds to a distortion of the subsystem dynamics which
can cause large unitary errors. In cases where the subsystem and shift Hamiltonians commute,
the coherent shift, more or less, corresponds to an energy shift similar to the Lamb shift like
contributions. In this case, generation of unitary errors may be more easily avoided.

In figure 13, we plot the absolute values of the canonical averages of the bath coupling
operators i.e. |�̄x | = |Tr{�̂xρ̂B(0)}| and |�̄z| = |Tr{�̂zρ̂B(0)}| versus increasing values of
Jx . In the case of phase errors, an overall decrease in the average is seen with increasing
magnitude of Jx . In the case of bit-flip errors, however, the increasing magnitude of Jx results
in a small amount of increase in the average. This is clearly consistent with the observed
improvement in fidelity with increasing Jx for phase-type coupling (see figures 7 and 8) and
the slight decline of fidelity for bit-flip-type coupling (see figures 5 and 6).

The unitary effects observed in our calculations are not of Lamb shift type and in fact are
quite worrying. The magnitude of the errors in fidelity for the span of a single CNOT gate
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Figure 13. |�̄x | and |�̄z| plotted versus Jx in units of ε.

is much larger than one would have expected based on the results of our previous study [4],
where a single qubit subsystem is configured to detect internal bath dynamics. We call this
setup a single qubit Rabi detector [4]. The bath Hamiltonian, and the xx-coupling operator
and its strength, employed in [4] were identical to those used in our CNOT study so that the
magnitude of the shift is not altered, but somehow it is dramatically more harmful. Moreover,
this has nothing to do with the dimensionality of the subsystem.

To show this, we have redone these calculations for a two-qubit subsystem (two-qubit
Rabi detector) which has the subsystem Hamiltonian

Ĥ S = − 1
2

(
Bzσ̂

1
z + Bzσ̂

2
z

)
, (23)

where Bz = 1 and the dynamics evolves from an initial state |ψ0〉 = 0.5(|0〉+ |1〉)⊗ (|0〉+ |1〉).
We plot the fidelity for the two-qubit Rabi detector in figure 14, which shows that the two-qubit
Rabi detector experiences errors in fidelity which are similar to those of the single-qubit Rabi
oscillator.

The only remaining possibility for the large errors in fidelity is the state dependence of the
CNOT gate. That is, the rapidly changing nature of the state on which the CNOT gate operates
is responsible for the large magnitude error. In what follows, a direct analogy between the
CNOT subsystem and a kicked top can readily be established by viewing the fidelity (in the
absence of the weak non-unitary effects) as being similar to the Loschmidt echo of a kicked
top.

A second unexpected effect is that the fidelity decay seems to be almost independent of B̄

which itself changes with Jx as shown in figure 13. In the single-qubit Rabi detector study [4],
the fidelity decay time was highly sensitive to Jx , and the same is true for the two-qubit Rabi
detector (see figure 14). Here the period of the decay increases substantially by 10 ns when
Jx increases from 0 to 0.15, then declines from Jx = 0.15 to Jx = 0.5, and finally moves
toward some saturated value after Jx = 1. Fidelity decay times for the CNOT with native xx

coupling vary by less than 0.1 ns. This is thus a major effect. It seems quite likely that these
two unusual effects are somehow related, and that CNOT dynamics has a phenomenology
similar to that of the Loschmidt echo of a kicked top [38].
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Figure 14. Fidelity F(t) versus time for two-qubit Rabi detector. Time is in units of h̄/ε =
0.038 ns.

It is well known that there are two regimes of Loschmidt echo of a kicked top [38]: the
fast exponential decay regime which is insensitive to the perturbation strength and the Golden
Rule regime where decays are slower and decay rates depend on the perturbation strength
[38]. Our results for the CNOT gate and Rabi detectors also fit into this picture and the origin
of the two unexpected unitary effects can be explained as arising from the kicked nature of the
CNOT gate.

The two-qubit Rabi detector would correspond to vanishingly weak kicking which would
be expected to lie in the Golden Rule regime where decays are slower and decay rates depend
on the perturbation strength [38]. However, note also that the sensitivity of fidelity to Jx

vanishes in the strongly chaotic bath regime (i.e. Jx = 1 and Jx = 2) where the period of
decay saturates toward a certain value.

On the other hand, it appears that the CNOT gate for xx-type coupling case lies in the
exponential decay regime where the fidelity does not show any sensitivity to perturbation
strength. However, the CNOT gate for the zz-type coupling case lies in the Golden Rule
regime where the dominant effect is the high sensitivity of fidelity to the perturbation strength.
The kicked-top nature of the CNOT gate suggests that removing the effects of the decay after
completion of the gate is essentially impossible, which means that error correction strategies
for the shift must be performed during each subcomponent of the gate.

8. Summary

We studied the effects of static one- and two-body flaws on a CNOT gate performed on part of a
larger Josephson charge-qubit QC [1]. We observed reduction of decoherence with increasing
intra-bath coupling, and a unitary shift of the gate, both as a result of residual interactions
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with the idle part of the QC. For this architecture it seems that the coherent shifting is far
more harmful than internal or external decoherence effects. Moreover, the large magnitude
of the error in fidelity and its insensitivity to the strength of the subsystem–bath interaction
strength put this QC in the so-called exponential decay regime of a kicked top. This means that
retroactive error correction is impossible, and error correction strategies will have to operate
concurrently with all gate components. We have given clear and complete explanations for all
of these effects.

Our results are specific to this particular architecture and parameter regime and it would
be interesting to see similar studies of other architectures. We anticipate that the observed
coherent shift is a universal feature of qubit-based flawed QCs. Since the magnitude of the
shift we observed is so large, an explicit experimental verification of this interesting effect
should be readily achievable for a relatively small number of qubits.
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